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The effect of tube elasticity on the stability of Poiseuille flow to infinitesimal axi- 
symmetric disturbances is investigated. The disturbance equations for the fluid are 
solved numerically while those for the arbitrarily thick tube are solved analytically 
in terms of Bessel functions of complex argument. It is shown that an elastic tube 
can cause instability of Poisenille flow, unlike a rigid tube, in which the flow is always 
stable. Neutral curves are presented for various values of the tube parameters. It is 
found that the critical Reynolds number varies almost as the square root of the Young’s 
modulus of the tube material while the critical dimensionless frequency is almost 
invariant, being about 1.1 for the cases studied. 

1. Introduction 
Fluid flow over flexible boundaries has been a subject of study for the last two 

decades, starting with the work of Miles (1957) on the theory of water-wave generation 
by wind. Benjamin (1960) was perhaps the first to consider the effects of a flexible 
boundary on hydrodynamic stability. Since then, several studies have been made to 
determine the effects of wall flexibility on the stability of laminar boundary-layer 
flow (Landahl 1962; Benjamin 1963) and on the stability of plane Poiseuille flow 
(Hains & Price 1962a, 6 ) .  These are summarized in a review article by Benjamin (1964). 

Studies have also been carried out to find the modes of wave propagation in station- 
ary fluids contained in a flexible tube. To that end Lin & Morgan (1956) and Rubinow 
& Keller (1971) present extensive mode analyses for inviscid fluids, while Cox (1969) 
summarizes the many analyses for plane-wave or lowest-mode propagation in viscous 
incompressible fluids. DeArmond & Rouleau (1972) found the lower modes for wave 
propagation in compressible viscous fluids and showed that tube elasticity was the 
primary factor in causing pressure-pulse dispersion. 

While it has been confirmed that Poiseuille flow in a rigid circular tube is stable to 
all infinitesimal disturbances (Salwen & Grosch 1972; Garg & Rouleau 1972; Gill 
1973), it has been found recently (Garg & Rouleau 1974) that flow in an elastic tube is 
unstable to infinitesimal axisymmetric disturbances. However, in that analysis the 
tube was modelled as a thin elastic membrane with mass, and so could not support 
shear or bending stresses. 

In the present paper the tube is described by the differential equations of linear 
elasticity, so that it may be arbitrarily (though uniformly) thick and there is no 
limitation as to the stresses or the modes of propagation that may be present. The 
fluid is described by the usual linearized disturbance equations which follow from 
the Navier-Stokes and continuity equations. The analysis is developed for both 
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spatial and temporal stability of flow in a thick, arbitrarily constrained, linear, 
viscoelastic tube for which the Young's modulus is complex. In  this paper, however, 
results are presented only for the linear spatial stability of flow in a purely elastic, 
unconstrained tube. 

2. Analysis 
2.1. Fluid equations 

For an infinitesimal axisymmetric disturbance superimposed on Poiseuille flow in a 
circular tube, the linearized Navier-Stokes and continuity equations are made non- 
dimensional with respect to the mean inner radius a of the tube, the maximum 
velocity Y of the Poiseuille flow and the density p of the fluid. Then each component, 
say $(r, z, t ) ,  of the Fourier series forming the axisymmetric disturbance is assumed to 

(1)  
be of the form 

where Re denotes the real part of a complex function, r, z and t are the dimensionless 
radial, axial and time co-ordinates, w is the complex frequency and k is the complex 
wavenumber. For the analysis of spatial stability, w is taken as purely real, and for 
temporal stability, k is taken as purely imaginary. Substitution of disturbance velocity 
components and pressure in the form ( 1 )  into the linearized continuity and Navier- 
Stokes equations leads to the following set of equations (Garg & Rouleau 1972): 

$(r,  z,  t )  = Re [$(r) exp (Icz - iw t ) ] ,  

D + -  v,.+kV, = 0, P a )  

.R(IcE - iw) V, - RDP = 0, ( 2 b )  

(2c) 

( '7)- 
[OB+;D+jk"--$- 1 1 11 

1 1 
2 + D + {k2 - B(k% - iw)} V, - RV, DE - Rk@ = 0, [.; 

where D is the operator dfdr, V,, V, and j5 are the dimensionless complex eigenfunctions 
for the disturbance velocity components and pressure, V,  = (1  - r2) is the dimensionless 
velocity of the Poiseuille flow and R = a V / v  is the Reynolds number, where v is the 
kinematic viscosity of the fluid and the maximum velocity V is twice the average 
velocity. 

2.2. TzLbe equations 
The tube is assumed to be an infinitely long circular cylinder made of a linear, iso- 
tropic, homogeneous, viscoel&stic solid of arbitrary but uniform thickness. The 
perturbations from the state of rest of the tube are assumed to be infinitesimal and 
axially symmetric. The radial and axial displacements q, and y,, non-dimensionalized 
with respect to the inner radius a of the tube a t  rest, describe the motion of a particle 
in the tube from its rest position. For a tube with a Poisson ratio a 4 +, these displace- 
ments satisfy the following non-dimensional equations of linear visooelasticity (Love 
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where 5 is the ratio of the tube density pw to the fluid density p, and 6 is given by 

where E is Young's modulus and Ct is the dimensionless speed of sound ( = (E/pw)i/Y) 
in the tube material. E is complex for a viscoelastic material but pure real for an 
elastic material. If q,, and q2 are expressed in the form ( l ) ,  the equations of motion (3) 

where 

m and q showing the coupling between the disturbance and tube parameters. 
For an incompressible material (o. = Q),  (3) and (5) are not valid owing to the factor 

1 - 2cr in the denominator of certain terms. For t'his case, the tube equations corre- 
sponding to (3) are (Love 1944) 

where p = P*/(P~'-~),  with p* representing the difference between the mean pressure 
at any point of the tube in the strained state and the pressure at  the same point in the 
unstrained state. Equation (7 c) represent's the condition of incompressibility, and 5 
is still given by (4). If qr, q2 and p are expressed in the form ( l ) ,  equations (7 )  reduce to 

(.+:) ?jr+k?j2 = 0, ( 8 c )  

where q2 = k2 + 4<d/[. (9) 

It may be pointed out that the definition of q given by (9) is the same as that given by 
(6) for cr = 4. 

2.3. Boundary conditions 

The physical restrictions a t  t'he centre of the tube require that the fluid velocity and 
pressure be bounded and continuous at  r = 0. Therefore the bou~idary conditions at  
r = 0 are (Garg & Rouleau 1972) 

V,,(O) = 0, V J O )  finite, p ( 0 )  finite. (10) 
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The velocity of the fluid and of the wall must be continuous a t  the interface, i.e. a t  

r = 1 + Re [?j, exp (kz - iwt ) ] .  

However, it  is convenient to express this boundary condition a t  the location r = 1. 
Following Benjamin (1960), therefore, the fluid velocities are expanded in a Taylor 
series about r = 1. Retaining only the dominant terms of the series gives 

In  view of (l) ,  this reduces to 

at r = 1. I 
- 
v,+iwrl, = 0 
7, dV,/dr + V ,  + iw7, = 0 

A comparison with similar boundary conditions (at r = 1) for the membrane model 
of the tube (Garg & Rouleau 1974, equation (9)) shows that the additional term 
7,.dK/dr appears for the present refined model. 

The radial and axial components of the stress must also be continuous a t  the 
interface. Transforming to the location r = 1, we get for u + 4 

at r =  1 (13) 

-I, + 2Dii,/R - - ~ ( l - ~ ) [ ( l - u ) D ? j r + u ( l l , + k ~ ~ ) ]  = 0 
(1-2fJ) 

- 
R " 

and for u = 

At the outer surface of the tube it is assumed that the stress is related to the displace- 
ment by a dimensionless impedance matrix Zii (i, j = 1, 2), so that the dimensionless 
radial and axial components of the stress are --Zllq,.-Z12qz and - Z 2 1 q r - Z 2 2 q z  
respectively. Owing to the continuity of these components a t  the outer surface 
r = 1 +h, where h is the ratio of the thickness of the tube to the inner radius, the 
boundary conditions for u + are 

and for u = + are 

It may be noted that for an unconstrained tube Zii = 0, and that Zij = a Z & / ( p V ) ,  
where Z$ is the dimensional counterpart of Zii .  
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For a given real value of w (for spatial stability) or a given imaginary value of 
k (for temporal stability) and given values of the Reynolds number R and the tube 
parameters E;, y, c, h and Zij, the solution of (2) and (5) or (8) together with the boundary 
conditions (lo), (12), (13) or (14), and (15) or (16) leads to an eigenvalue problem. 
The flow is considered to be spatially unstable when the disturbance grows with z 
and temporally unstable when it grows with time. In  terms of k or w, the flow will 
be spatially unstable when kr > 0 and temporally unstable when oi > 0. 

3. Solution 
The three coupled differential equations (2) for the fluid are solved by a numerical 

technique developed earlier by Garg & Rouleau (1974). In  short, the eigenfunctions 
are expanded as a power series in r near r = 0. The series solution is terminated a t  a 
small but finite value of r and the solution is continued up to the inner wall of the tube 
by a fourth-order Runge-Kutta integration technique. This solution involves two 
complex constants, say Ul and Pl. 

Thus, if (Sl, S,, S,) 3 (E,., V,, ji), the series expansion for each eigenfunction can be 
assumed to be of the form 

S, = raj(Slj + S, r2 + S,, r4 + . . . + 8, r2(I-l) + . . .), j = 1,2,3,  (17) 

(811, 512,s13) (4, ul, P1), etc* (18) 

where the Sli are complex constants with 

Substituting (17) into (2) and setting to zero the coefficient of ra for each a in the 
resulting equations, the values of the aj that satisfy the boundary conditions (10) 
at r = 0 are 

and the recurrence relations for the V’s, U’s and P’s are (Garg & Rouleau 1974) 

(20c) 
1 q+1 = m[4Z(E+ ~ ) K + ~ + Y Y + ~ R F ; - ~ ] ,  

where any term with either a zero or a negative subscript is set to zero, and where 

and 1 is a positive integer. 
y = k 2 - R ( k - i w )  (21) 

Pl and only one of Ul and V, are independent owing to the relation 

v, = -$kU1. (22) 

Taking Ul and Pl to be independent, any eigenfunction can be expressed as a sum of 
two terms; for example, the pressure eigenfunction ji(r) may be written as 

(23) 

This results in two sets of solutions (vTl, val, pl) and (v,.,, vG2, p2) that are independent 
of each other, and must satisfy (2) independently. 

- 

244 = PlW Ul +P2(9-) Pl. 
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Here Jo and J1 are Bessel functions of the first kind and orders zero and one, res- 
pectively; Yo and Yl are Bessel functions of the second kind and orders zero and one, 
respectively; and A ,  B ,  C and D are undetermined complex constants. 

The six constants U,, Pl, A ,  B ,  C and D must be evaluated in order to complete the 
solution. This is done with the help of six boundary conditions at  the inner and outer 
wall of the tube. For tube material with c =# 8, these boundary conditions are (12), 
(13) and (15), while for u = 4, they are (12), (14) and (16). This leads to six homo- 
geneous linear equations for the six constants, so that for a non-trivial solution the 
determinant of the coefficient matrix must vanish. The vanishing of this determinant 
leads to the dispersion relation between k and w, and enables the ratios of the six 
constants to be determined. When these ratios are used in the solution of the fluid 
and tube equations, they determine a solution of the problem, or a ‘mode’, up to a 
multiplicative constant. Available as roots of the dispersion relation, there are in- 
finitely many values of the wavenumber k for spatial stability analysis or of the 
frequency w for temporal stability analysis. 

The problem then arises of the isolation of one or more of the infinite number of 
modes that may be unstable, i.e. for which the corresponding complex eigenvalue k 
has a positive real part for spatial analysis or for which the eigenvalue w has a positive 
imaginary part for temporal analysis. This requires an investigation of a significant 
part of the complex k or w plane. An eigenvalue search technique, developed by Garg 
& Rouleau (1972), was used for this purpose. Isolation of the eigenvalues was accom- 
plished by dividing the region into smaller subregions until an eigenvalue was bracketed 
closely enough for an iterative technique to converge to it. 

4. Computational procedure 
The series solution for the fluid equations was applied in the region 0 < r < 0.1 

and from 10 to 15 terms were required for convergence, the larger number of terms 
corresponding to Reynolds numbers of the order of104. The convergence criterion for 
the series solution was that the ratio of the last term retained to the partial sum up 
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Case E (MPa) h 0- c 
1 10 000 0.1 0.3 2.0 
2 1000 0.1 0.3 2.0 
3 1000 0.3 0.3 2.0 
4 1000 0.1 0.5 2.0 
6 1000 0.1 0.3 6.0 

TABLE 1. Tube parameters. 

to the last term but one should be less than 10-l6. The fourth-order Runge-Kutta 
method was used for numerical integration of the differential equations (2) over 
0.1 < r < 1; the step size was generally taken to be 0.005. Double-precision algorithms 
were used to calculate the Bessel functions J,(z) (Scarton 1971) and Y,(z) (Garg 1976). 
Calculations were performed on an IBM 7044 computer that carried 17 digits in the 
double-precision mode. 

5. Results 
Results are presented here for the effect of purely elastic, unconstrained tubes 

(i.e. E real, Zij = 0) on the spatial stability of Poiseuille flow. For the tube material, 
density ratios of 2.0 and 6.0, Poisson ratios u of 0.3 and 0-5 and Young's moduli 
E of 103MPa (1.45 x 105psi) and 104MPa were chosen. The dimensionless tube 
thickness h was given the values 0.1 and 0.3 (see table 1). The fluid considered was 
glycerol at  30 "C (p = 1260 kg/m3, v = 3 x m2/s), and the tube's inner radius a 
was taken to be 10 mm. As will be discussed later (see Q 5.3), there is no loss of generality 
in fixing the values of p, v and a since the results can be easily applied to any other 
combination of these parameters by using the dimensionless parameter E ,  defined by (4). 

Recalling that all possible modes for the linear stability of Poiseuille flow in a rigid 
tube are stable (Garg & Rouleau 1972; Salwen & Grosch 1972; Gill 1973), it  is interest- 
ing to note that elasticity of the tube introduces a, mode (designated mode 1) that 
exhibits spatial instability (Ic,  > 0)  and thus has a critical Reynolds number (corre- 
sponding to k,, = 0). There is at least one more mode, designated mode 2, that has no 
counterpart among the modes for flow in a rigid tube, but it is always stable. The 
behaviour of both these modes is dependent on the tube parameters as well as on 
the flow Reynolds number and disturbance frequency. Besides these modes, there is 
also a mode which is essentially the stable fluid-dynamic mode modified (only slightly) 
by the presence of the elastic wall. Since eigenvalues for this mode are very nearly 
the same as those for the least stable mode for a rigid tube (Garg 1971) and those for a 
membrane-like elastic tube (Garg & Rouleau 1974), they are not presented here. 

5.1. Behaviour of mode 1 

Figures 1-5 illustrate the variation of the spatial growth rate k,, and the phase velocity 
C, ( = o / k i )  with the Reynolds number R for mode 1 for various values of the disturb- 
ance frequency o and for the five sets of tube parameters listed in table 1. These 
figures show that the curves for the spatial growth rate pass through a maximum 
that is dependent on the disturbance frequency and the tube parameters. Given 
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FIGURE 1. Variation of kr and C, with R for various values of o: case 1 
(mode 1, E = 104MPa, h = 0.1, rn = 0.3, 5 = 2.0). 
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FIGURE 2. Variation of k? and C, with R for various values of o: case 2 
(mode 1, E = 1O3MPa, h = 0-1, Q = 0.3, 6 = 2.0). 

appropriate combinations of the flow Reynolds number and the tube parameters, 
the maximum growth rate increases as the frequency decreases. On comparing figures 
1,  2 and 5,  we find that the maximum growth rate k-, increases as the Young’s 
modulus E decreases or as the density ratio 5 increases. A comparison of figures 2 
and 3 shows that k-. decreases with increasing h for lower w but increases with 
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FIQIJRE 3. Variation of kr and C, with R for various values of w :  case 3 
(mode 1, E = 103MPa, h = 0-3, u = 0.3, &'= 2.0). 
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FIGURE 4. Variation of kr and C, with R for various values of w :  case 4 
(mode 1, E = lOSMPa, h = 0.1, u = 0.5, &' = 2-0). 
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FIGURE 8. Variation of k, and C, with R for various values of u: cme 6 
(mode 1, E = 109MPa, h = 0.1, Q = 0.3, < = 6.0). 
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FIGURE 6. Neutral curves for two values of E (h  = 0.1, d = 0.3, < = 2.0). -, E = 10SMPa; ---, E = 104MPa. 

increasing h at higher frequencies, while a comparison between figures 2 and 4 shows 
that the maximum growth rate is higher for flow in an incompressible tube (a = 0.5) 
than for flow in a compressible tube (cr = 0.3). 

For all five cases, the phase velocity C, lies between 1.0 and 2.0, and decreases 
either as the frequency w or as the Reynolds number R increases. The values of C, 



The stability of Poiseuille jlow 

k, 0.5 

0.4 

0.3 

0.2 

0.1 

636 

- 

- 

- 

- 

- 

I I Unsjable o,5 I \ '  
I 
I 

I I \ 

I 0.31 

I 
I 
I 

I 
0 =0.1 I 0.11 I 10.1 'Lo. 

0 1  I I I I I I I I 
6 7 8 9 10 11 12 13 14 

R,  x lo-* 

5 

FIGURE 7. Neutral curves for two values of h ( E  = 108MPa, cr = 0.3, 
g = 2.0). -, h = 0.1; ---, h = 0.3. 

greater than 1.0 imply that the dimensional phase velocity of the disturbance is 
greater than the maximum fluid velocity in the tube. Thus the motion derives primarily 
from the elastic vibrations in the tube but is influenced by the flow velocity. Therefore 
this mode, as well as mode 2, to be discussed later, corresponds to the class of elastic 
waves noted by Benjamin (1960, 1963) in his analyses of boundary-layer stability on 
an elastic surface; the instability of mode 1 is thus essentially a resonance effect. It 
may be noted that, for the results in figures 1-5, C, varies such that 0.5 < CJC, < 1.0. 

Since portions of the k,, R curves that lie above the R axis (k,, = 0) correspond to 
instability of the flow, it can be observed that there is a range of Reynolds numbers 
for appropriate combinations of w and the tube parameters for which the flow is 
unstable. For a given set of tube parameters, this range generally shrinks as the 
frequency of disturbance increases, and it nearly vanishes for w 2 1.1 for the cases 
studied. This implies that, over the range of investigation, Poiseuille flow in an elastic 
tube is spatially stable to all infinitesimal axisymmetric disturbances of dimensionless 
frequency higher than about 1.1. The values of the critical Reynolds numbers R, and 
the corresponding phase velocities are listed in table 2, while figures 6-9 show the 
neutral curves (ki vs. R,) for the various sets of tube parameter values, the disturbance 
frequencies being displayed over the curves. The parameters for these figures have 
been selected in such a way that the effect, on the neutral curve, of changing any one 
of the four tube parameters E ,  h, cr and y can be easily observed. Thus, while figure 6 
provides a comparison between the neutral curves for two different values of E ,  
figures 7, 8 and 9 do so for different values of h, v and [ respectively. It is instructive 
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FIGURE 9. Neutral curves for two values of 5 ( E  = lo3 MPa, 
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Frequency 
0 

0.1 
0.3 
0.5 
0.75 
1.0 

0- 1 
0.3 
0.5 
0.75 
1.0 
1-04 

0.1 
0.3 
0.5 
0.75 
1.0 
1.05 

0.1 
0.3 
0.5 
0.75 
1.0 
1.1 

0.1 
0.3 
0.5 
0.7 
0.8 
1.0 

Lower limit Upper limit 

Rc 

2852.08 
2927.13 
2979.63 
3049,72 
3172.79 

874.98 
905.07 
923.30 
948.99 
898.41 

1019.69 

1103.32 
1124.33 
1139.32 
1154.18 
1157-26 
1159.49 

669.96 
677.61 
694.84 
721.13 
765.52 
806.41 

575.20 
587.64 
602.32 
623.37 
636.80 
672.49 

c* 

Case 1 
1.3537 
1-3282 
1.2964 
1.2385 
1.1468 

Cme 2 
1.3742 
1.3412 
1.3081 
1.2480 
1.1498 
1.1233 

Case 3 
1.5134 
1.4805 
1.4366 
1.3567 
1.2464 
1.2169 

Case 4 

1.5424 
1.5219 
1.4841 
1.4189 
1.3176 
1.2482 

Case 5 

1-661 1 
1.6222 
1.5684 
1.4901 
1.4391 
1.3052 

Rc 

4250.24 
4047.39 
3 9 3 2.9 8 
3771.80 
3487.34 

1352.87 
1344.45 
1304.02 
1243.04 
1130.27 
1096.46 

1444.7 5 
1421.96 
1416.70 
1394.73 
1283.55 
1244.92 

1193.97 
1142.47 
1086.33 
1020.81 
936.01 
877.37 

805.98 
780.86 
783.14 
791.23 
793.30 
774.52 

c, 

1.1715 
1-1771 
1.1625 
1.1283 
1.0913 

1.1663 
1.1583 
1-1434 
1.1097 
1.0777 
1.0799 

1-2994 
1.2972 
1-2647 
1.1981 
1.1443 
1.1435 

1.1889 
1.2006 
1.2004 
1.1854 
1-1709 
1.1838 

1.3364 
1.3576 
1.3263 
1.2685 
1.2323 
1-1624 

TABLE 2. Values of R and C, for neutral spatial stability (k, = 0). 

Case R wc c, 
1 3320.0 1.05764 1.0989 
2 1050.0 1.06133 1.0975 
3 1200.0 1.09148 1.1551 
4 835.0 1.12075 1.2145 
5 700.0 1.08742 1-2175 
5 725.0 1.10489 1.1692 

TABLE 3. Values of w and C, for neutral spatial stability (k,. = 0). 
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FIGURE 10. Variation of kr and 0, with R for mode 2 
( E  = IO’MPa, h = 0.1, u = 0.3, f; = 6.0). 
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to note that both the lower and the upper critical Reynolds numbers vary almost as 
the square root of the Young’s modulus for the tube material. This is to be expected 
since Eoc R2 [see (4)]. Since the phase velocity corresponding to the neutral curves 
is almost unity, the curves of w w. A!, look very similar to those presented here. 

Table 3 lists some critical frequencies and phase velocities for Reynolds numbers 
close to the peak points on the neutral curves in figures 6-9. 

5.2. Behaviour of mode 2 

In contrast to  mode I ,  for which the flow is unstable owing to the elasticity of the 
tube material, mode 2 is always stable. Therefore only a few eigenvalues corresponding 
to this mode were computed. These are displayed in figure 10 in terms of k,, R and 
C,, R curves for w = 0.1 and 0-5. It can be observed that, as R increases, this mode 
tends to become neutrally stable while its phase velocity approaches unity. In addition, 
the k,., R curves exhibit a minimum (note that - kr has been plotted ws. R), which 
implies that this mode is ‘most stable’ for a particular Reynolds number. Also, a 
simple calculation shows that the ratio of C, to C,is of the order of unity, C, being less 
than C, at low Reynolds numbers but greater than C, at high Reynolds numbers. 

5.3. Effect of a, p and v 
It is imperative to describe the effect of changes in the dimensional variables a, p and 
v, since they enter the dimensionless parameters R, 6 and E but were kept at the 
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previously given constant values during the investigation. If the tube's inner radius a 
were doubled but R and h were kept constant, the centre-line velocity Y would be 
halved, and, in order to keep the same value of the dimensionless parameter 5, the 
Young's modulus E should be reduced by a faotor of 4 [see (a)]. Thus, for a tube with 
twice the previous inner radius all the above results would hold for values of E one- 
quarter of those indicated. Similarly, for twice the fluid density but for the same 
value of g, E should be doubled, and for twice the fluid viscosity but with R constant, 
E should be quadrupled for all the previous results to hold. 

Extending these arguments to find the critical Reynolds number for flow of glycerol 
st 30 "C through a 20mm I.D. steel tube of thickness 1 mm, we find that the tube 
parameters 5, h, and CT for case 5 (see table 1)  are the appropriate ones. For case 5, 
6 = 6.0 corresponds to pw = 7560 kg/m3 while for steel put = 7750 kg/m3. Thus, to 
keep g fixed at 6.0 for steel, p should be 1292 kg/m3, so that results for case 5 would 
hold for E = 1.025 x 103MPa if p = 1292 kg/m3. Since for steel E = 2 x 1O5MPa, and 
since Re varies almost as E4, we fhd  that the critical Reynolds numbers listed in 
table 2 for case 5 should be multiplied by a factor of about 14 in order to apply to flow 
in a steel tube as described above. 

6. Conclusions 
From these results, it seems likely that the difference between the predictions of 

linear stability theory for rigid-pipe flow as compared with channel flow is due to the 
pipe flow being completely enclosed by a solid boundary whereas the channel flow 
is only partially confined. Elasticity of the pipe wall tends to ease the confinement of 
Poiseuille flow, leading to instability even to infinitesimal axisymmetric disturbances 
over a range of flow Reynolds numbers and disturbance frequencies. The flow is, 
however, stable if the frequency exceeds a certain upper limit, and also if the Reynolds 
number is either less than a lower limit or more than an upper limit. Both the lower 
and the upper critical Reynolds numbers vary with the tube parameters E ,  h, IT and 
c, but the critical frequency is almost invariant and is about 1.1 for the cases studied. 
It is also found that both the critical Reynolds numbers vary almost as the square 
root of the Young's modulus of the tube material. 

The phase velocity of growing disturbances is greater than the maximum velocity 
of the Poiseuille flow and is of the same order of magnitude as the speed of sound in 
the tube materiai. This indicates that instability of the flow is caused by the elastic 
waves in the tube, modified by the presence of fluid flow. 
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